85 research outputs found

    Clinical relevance and outcome of familial papillary thyroid cancer: a single institution study of 626 familial cases

    Get PDF
    BackgroundWhether familial thyroid cancer is more aggressive than sporadic thyroid cancer remains controversial. Additionally, whether the number of affected family members affects the prognosis is unknown. This study focused mainly on the comparison of the clinicopathological characteristics and prognoses between papillary thyroid cancer (PTC) patients with and without family history.MethodsA total of 626 familial papillary thyroid cancer (FPTC) and 1252 sporadic papillary thyroid cancer (SPTC) patients were included in our study. The clinical information associated with FPTC and SPTC was recorded and analyzed by univariate analysis.ResultsPatients in the FPTC group had a higher rate of multifocality (p=0.001), bilaterality (p=0.000), extrathyroidal invasion (p=0.000), distant metastasis (p=0.012), lymph node metastasis (p=0.000), recurrence (p=0.000), a larger tumor size (p=0.000) and more malignant lymph nodes involved (central: p=0.000; lateral: p=0.000). In addition, our subgroup analysis showed no significant difference (p>0.05) between patients with only one affected family member and those with two of more group in all clinicopathological characteristics. In papillary thyroid microcarcinoma (PTMC) subgroup analysis, we found that FPTMC patients harbored significantly larger tumors (p=0.000), higher rates of multifocality (p=0.014), bilaterality (p=0.000), distant metastasis (p=0.038), lymph node metastasis (p=0.003), greater numbers of malignant lymph nodes (central: p=0.002; lateral: p=0.044), higher rates of I-131 treatment (p=0.000) and recurrence (p=0.000) than SPTMC patients.ConclusionOur results indicated that PTC and PTMC patients with a positive family history had more aggressive clinicopathological behaviors, suggesting that more vigilant screening and management for FPTC may be helpful

    Building a Global Ecosystem Research Infrastructure to Address Global Grand Challenges for Macrosystem Ecology

    Get PDF
    The development of several large-, "continental"-scale ecosystem research infrastructures over recent decades has provided a unique opportunity in the history of ecological science. The Global Ecosystem Research Infrastructure (GERI) is an integrated network of analogous, but independent, site-based ecosystem research infrastructures (ERI) dedicated to better understand the function and change of indicator ecosystems across global biomes. Bringing together these ERIs, harmonizing their respective data and reducing uncertainties enables broader cross-continental ecological research. It will also enhance the research community capabilities to address current and anticipate future global scale ecological challenges. Moreover, increasing the international capabilities of these ERIs goes beyond their original design intent, and is an unexpected added value of these large national investments. Here, we identify specific global grand challenge areas and research trends to advance the ecological frontiers across continents that can be addressed through the federation of these cross-continental-scale ERIs.Peer reviewe

    Land-Use Change, Habitat Connectivity, and Conservation Gaps: A Case Study of Shorebird Species in the Yellow River Delta of China Using the InVEST Model and Network Analysis

    No full text
    Coastal wetlands form a transition zone between terrestrial and marine environments and provide important ecosystem services. Land-use change in the coastal zone has a substantial effect on habitat connectivity and biodiversity. However, few studies have characterized the effects of land-use change on coastal habitat connectivity. We conducted remote sensing analysis, modeling with the Integrated Valuation of Ecosystem Services and Trade-offs model, geospatial analysis, and habitat connectivity analysis to evaluate historical spatiotemporal changes in the habitat quality and habitat connectivity of migratory shorebirds in the Yellow River Delta, which is an important stopover site along the East Asian–Australasian Flyway migratory route. Several high- and medium-quality areas have been converted to industrial mining and mariculture sites because of land reclamation. The probability of connectivity decreased by −66.7% between 1975 and 2020. Approximately 71.0%, 11.6%, and 5.8% of patches with high importance have been converted to non-habitat patches, habitat patches with medium importance, and habitat patches with low importance, respectively; approximately 58.9% and 11.7% of the patches with medium importance have been converted to non-habitat patches and habitat patches with low importance, respectively. The total priority conservation area was 389.4 km2, and 125.0 km2 (32.1%) of this area remains unprotected; these unprotected areas are mainly distributed in the northwestern and eastern parts of the Yellow River Delta. We recommend that the boundary of the Yellow River Delta National Nature Reserve be expanded to incorporate these unprotected areas

    Land-Use Change, Habitat Connectivity, and Conservation Gaps: A Case Study of Shorebird Species in the Yellow River Delta of China Using the InVEST Model and Network Analysis

    No full text
    Coastal wetlands form a transition zone between terrestrial and marine environments and provide important ecosystem services. Land-use change in the coastal zone has a substantial effect on habitat connectivity and biodiversity. However, few studies have characterized the effects of land-use change on coastal habitat connectivity. We conducted remote sensing analysis, modeling with the Integrated Valuation of Ecosystem Services and Trade-offs model, geospatial analysis, and habitat connectivity analysis to evaluate historical spatiotemporal changes in the habitat quality and habitat connectivity of migratory shorebirds in the Yellow River Delta, which is an important stopover site along the East Asian–Australasian Flyway migratory route. Several high- and medium-quality areas have been converted to industrial mining and mariculture sites because of land reclamation. The probability of connectivity decreased by −66.7% between 1975 and 2020. Approximately 71.0%, 11.6%, and 5.8% of patches with high importance have been converted to non-habitat patches, habitat patches with medium importance, and habitat patches with low importance, respectively; approximately 58.9% and 11.7% of the patches with medium importance have been converted to non-habitat patches and habitat patches with low importance, respectively. The total priority conservation area was 389.4 km2, and 125.0 km2 (32.1%) of this area remains unprotected; these unprotected areas are mainly distributed in the northwestern and eastern parts of the Yellow River Delta. We recommend that the boundary of the Yellow River Delta National Nature Reserve be expanded to incorporate these unprotected areas
    corecore